Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.11 EC 22/08/22

CONTINUOUS INTERNAL EVALUATION - 3

Dept:EC	Sem / Div:IV A	Sub:Analog Circuits	S Code:18EC42
Date:30/08/2022	Time: 3:00-4:30	Max Marks: 50	Elective:N
	pm		

Note: Answer any 2 full questions, choosing one full question from each part.

QN	Questions	Marks	RBT	CO
	PART A			
1 a	Explain the working of op-amp Non inverting amplifier. Derive the expression gain both exact and ideal analysis and get expressions for Rif, Rof and fof	9	L2	CO4
Ь	For an inverting Schmitt Trigger circuit $R_1 = 15K\Omega$; $R_2 = 1K\Omega$ and $V_{in} = 10V_{p-pp}$ sine wave. The saturation voltages are \pm 14V and $V_{ref} = 2$ V. i) Determine the threshold voltages V_{ut} and V_{lt} . ii) Find the value of Hysteresis voltage V_{hy} .	28-7		CO4
С	What is an instrumentation amplifier? What are its applications? With a neat circuit diagram explain an instrumentation amplifier using a transducer bridge.	10	L3	CO4
	OR			
2 a	Derive the expression for closed loop voltage gain, input and output resistance of inverting Amplifier. The opamp 741C is connected as an inverting amplifier with R1=1k Ω and RF=4.7k Ω . Compute the closed loop parameters: AF, RIF, ROF, fF Given A=400000, Ri=33M Ω and RO=60 Ω ; supply voltages are \pm 13V; Max output voltage swing = \pm 13V, Unity gain bandwidth = 0.6MHz .	10	L2 0	CO4
b	Explain the operation of 4-bit R-2R DAC with neat circuit. For the R-2R DAC, with $R=10k\Omega$ and $R_F=20k\Omega$ and $V_{REF}=5V$, determine the output voltage when the inputs $b0=b1=5V$ and	9	L3	CO4

Page: 1 / 2

jega mediyi	b2=b3=0V			
arpiopus **	c Explain the working of a Successive Approximation type of ADC.	f 6	L2	CO4
alement)	PART B		recollecture consess	Armenia en reconstruir en esta de la companya de l
3	a Derive an Expression for the output of a inverting Summing amplifier with three inputs and averaging amplifier		L2	CO4
	b Explain the operation of a monostable multivibrator wit relevant diagrams and waveforms.	h 10	L2	CO4
	c Write the difference between Inverting and Non Inverting amplifier.	5	L2	CO4
	OR			
4	a Explain the basic comparator circuit using an opamp. How ca this circuit be used in an application as a zero crossin detector?		L2	CO4
	bDesign an Astable Multivibrator using 555 timer havin output frequency of 10KHz with a dutyCycle of 25%.	g 6	L3	CO4
	c Explain the working of a second order high pass Butterworth filter with a neat circuit diagram and frequence response. Write the relevant design equations.	1	L2	CO4

Prepared by: Nisha G R

HOD